References

  1. ↑ Jump up to:1.0 1.1 Shi D., Zhang W., Zhang W., Ding X. A review on lower limb rehabilitation exoskeleton robots. Chinese J Mechanical Engineering 2019; 32; 74.
  2.  MarketsandMarkets.Exoskeleton Market by Type (Powered, Passive), Component (Hardware, Software), Mobility, Body Part (Lower Extremities, Upper Extremities, Full Body), Vertical (Healthcare, Defense, Industrial) and Region (2021-2026).Available online: https://www.marketsandmarkets.com/Market-Reports/exoskeleton-market-40697797.html?gclid=EAIaIQobChMI0sb4vu_6-AIVuY1oCR0KRguCEAAYASAAEgJQu_D_BwE [accessed 15/07/2022]
  3.  Esquenazi A., Talaty M. Robotics for Lower Limb Rehabilitation. Phys Med Rehabil Clin N Am. 2019 May;30(2):385-397.
  4.  Edwards, D., Forrest, G., Cortes, M. Weightman M., Sadowsky C., Chang S-H., et al. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Spinal Cord 2022; 60: 522–532.
  5.  Hobbs B., Artemiadis P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation. Frontiers in Neurorobotics 2020; 14:19.
  6.  Sandro Gatillo. Robotics Technology for Stroke and Brain Injury Rehabilitation [Internet]. 2017 [cited 8 May 2017]. Available from: https://www.youtube.com/watch?v=-EdfmoVBR5k
  7.  Bayon C., Raya R., Lerma Lara S., Ramirez O., Serrano I., Rocon E. Robotic therapies for children with cerebral palsy:a systematic review. Translational Biomedicine 2016; 7(1):44.
  8.  Capecci, m., Pournajaf S., Galafate D., Sale P., Le Pera D., Goffredo M., De Pandis MF., Andrenelli E., Pennacchioni M., Ceravolo MG., Franceschini M. Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial. Annals Phys and Rehabil Med, 2019; 62(5):303-312.
  9.  Sconza C., Negrini F., Di Matteo B., Borboni A., Boccia G., Petrikonis I., Stankevičius E., Casale R. Robot-Assisted Gait Training in Patients with Multiple Sclerosis: A Randomized Controlled Crossover Trial. Medicina (Kaunas) 2021; 57(7):713.
  10.  Karunakaran K., Nisenson D., Nolan K. Alterations in Cortical Activity due to Robotic Gait Training in Traumatic Brain Injury. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3224-3227.
  11.  Pearce A., Adair B., Miller K., Ozanne E., Said C., Santamaria N., Morris M. Robotics to Enable Older Adults to Remain Living at Home. J Aging Res 2012; 2012: 538169.
  12. ↑ Jump up to:12.0 12.1 Payedimarri A., Ratti M., Rescinito R., Vanhaecht K., Panella M. Effectiveness of Platform-Based Robot-Assisted Rehabilitation for Musculoskeletal or Neurologic Injuries: A Systematic Review. Bioengineering 2022, 9(4), 129.
  13. ↑ Jump up to:13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Bryce T, Dijkers M, Kozlowski A. Framework for Assessment of the Usability of Lower-Extremity Robotic Exoskeletal Orthoses. Am J Phys Med Rehabil. 2015;94(11):1000-1014. DOI:10.1097/PHM.0000000000000321
  14. ↑ Jump up to:14.0 14.1 14.2 Díaz I, Gil J, Sánchez E. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. J Robotics. 2011;2011:1-11.
  15.  Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: narrative review. PM R. 2018;10:S174-S188.
  16. ↑ Jump up to:16.0 16.1 Maggioni S, Melendez-Calderon A, van Asseldonk E, Klamroth-Marganska V, Lünenburger L, Riener R et al. Robot-aided assessment of lower extremity functions: a review. J Neuroeng Rehab. 2016;13(1).
  17.  Manns P.J., Hurd C., Yang JF. Perspectives of people with spinal cord injury learning to walk using a powered exoskeleton. J Neuroeng Rehabil. 2019;16:94.
  18.  Postol N., Grissell j., McHugh C., Bivard A., Spratt N. , Marquez J. Effects of therapy with a free-standing robotic exoskeleton on motor function and other health indicators in people with severe mobility impairment due to chronic stroke: A quasi-controlled study. J Rehabil Assist Technol Eng. 2021 Jan-Dec; 8: 20556683211045837.
  19.  Mortenson WB, Pysklywec A, Chau L, Prescott M, Townson A. Therapists’ experience of training and implementing an exoskeleton in a rehabilitation centre. Disabil Rehabil. 2020. https://doi.org/10.1080/09638288.2020.1789765
  20.  Harwin W, Patton J, Edgerton V. Challenges and Opportunities for Robot-Mediated Neurorehabilitation. Proc IEEE. 2006;94(9):1717-1726.
  21. ↑ Jump up to:21.0 21.1 21.2 Ramesh N., Iwaniec M., Arawade S. Past, present and future of assistive robotic lower limb exoskeletons. MATEC Web of Conferences 2022; 357:03005.
  22.  Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: A systematic review comparing end-effector and exoskeleton devices. Journal of Rehabil Med. 2012;44(3):193-199.
  23.  Phoenix | suitX [Internet]. Suitx.com. 2017 [cited 9 May 2017]. Available from: http://www.suitx.com/phoenix
  24.  suitX. Phoenix [Internet]. 2017 [cited 8 May 2017]. Available from: http://www.suitx.com/phoenix
  25.  Products | Ekso Bionics [Internet]. Ekso Bionics. 2017 [cited 9 May 2017]. Available from: http://eksobionics.com/eksohealth/products/
  26.  Business Street. Community Regional Medical Center Demonstrates Esko Bionic Exoskeleton [Internet]. 2014 [cited 8 May 2017]. Available from: https://www.youtube.com/watch?v=fav-sgk7_yA
  27.  Madonna Rehabilitation Hospitals. Ekso GT Robotic Exoskeleton [Internet]. 2017 [cited 8 May 2017]. Available from:https://www.madonna.org/images/uploads-users/content/gallery/Ekso_1200x630_2 .jpg
  28.  Comparing Indego vs Ekso GT vs ReWalk, Researched by VAPAHCS [Internet]. Exoskeleton Report. 2017 [cited 9 May 2017]. Available from: http://exoskeletonreport.com/2016/09/comparing-indego-vs-ekso-gt-vs-rewalk-researched-vapahcs/
  29.  Product Information – Rex Bionics [Internet]. Rex Bionics. 2017 [cited 9 May 2017]. Available from: http://www.rexbionics.com/product-information/
  30.  Who is Keeogo™ for? [Internet]. Keeogo restores and enhances autonomy in mobility. [cited 2017May9]. Available from: http://www.keeogo.com/who-is-keeogo-for
  31.  Spinal Cord Research and Advocacy. Lower Limb HAL [Internet]. 2015 [cited 8 May 2017]. Available from: https://spinalcordresearchandadvocacy.files.wordpress.com/2015/09/lower-limb-hal .jpg
  32.  Indego – Powering People Forward | Parker Indego [Internet]. Indego.com. 2017 [cited 9 May 2017]. Available from: http://www.indego.com/indego/en/home
  33.  Lokomat® – Hocoma [Internet]. Hocoma. 2017 [cited 9 May 2017]. Available from: https://www.hocoma.com/solutions/lokomat/
  34.  Center For Neuro Recovery. Lokomat Pro Gait Training [Internet]. 2015 [cited 8 May 2017]. Available from: http://www.centerforneurorecovery.com/wp-content/uploads/2015/06/Lokomat-Pro-Robotic-Gait-Training .jpg
  35.  Reha Stim | Gait Trainer GT I [Internet]. Reha-stim.de. 2017 [cited 9 May 2017]. Available from: http://www.reha-stim.de/cms/index.php?id=76
  36.  G-EO System – Reha Technology [Internet]. Rehatechnology.com. 2017 [cited 9 May 2017]. Available from: https://www.rehatechnology.com/en/products/g-eo-system
  37.  LokoHelp | Woodway [Internet]. Woodway.com. 2017 [cited 9 May 2017]. Available from: https://www.woodway.com/products/lokohelp
  38.  Laut J , Porfiri M & Raghavan P. The present and future of robotic technology in rehabilitation. Curr Phys Med Rehabil Rep. 2016;4: 312.